Functional Equations, Tempered Distributions and Fourier Transforms
نویسندگان
چکیده
منابع مشابه
Generalized Fourier Transforms of Distributions
In [1], R. A. Kunze has presented a notion of generalized Fourier transform of functions on locally compact abelian groups. The point of this paper is to extend this idea in the direction of distribution theory and to present some initial results on this generalized Fourier transform of distributions. In a later paper we hope to investigate in detail the domain, range, and kernel of this transf...
متن کاملMath 172: Tempered Distributions and the Fourier Transform
We have seen that the Fourier transform is well-behaved in the framework of Schwartz functions as well as L, while L is much more awkward. Tempered distributions, which include L, provide a larger framework in which the Fourier transform is well-behaved, and they provide the additional benefit that one can differentiate them arbitrarily many times! To see how this is built up, we start with a r...
متن کاملPositive-definiteness, Integral Equations and Fourier Transforms
We show that positive definite kernel functions k(x, y), if continuous and integrable along the main diagonal, coincide with kernels of positive integral operators in L2(R). Such an operator is shown to be compact; under the further assumption k(x, x) → 0 as |x| → ∞ it is also trace class and the corresponding bilinear series converges absolutely and uniformly. If k1/2(x, x) ∈ L1(R), all these ...
متن کاملOn Fourier Transforms of Radial Functions and Distributions
We find a formula that relates the Fourier transform of a radial function on R with the Fourier transform of the same function defined on R. This formula enables one to explicitly calculate the Fourier transform of any radial function f(r) in any dimension, provided one knows the Fourier transform of the one-dimensional function t 7→ f(|t|) and the two-dimensional function (x1, x2) 7→ f(|(x1, x...
متن کاملPoincare wave equations as Fourier transforms of Galilei wave equations
It is well known that the Galilei algebra is a sub algebra of Poincare algebra in one space dimension more. 1 This fact allows us to relate relativistic Poincare and Galilean theories. An interesting point is that Galilei transformations in two space dimensions are contained in the usual Poincare transformations? This enables us to present Poincare spin zero wavefunctions as Fourier transforms ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1989
ISSN: 0002-9947
DOI: 10.2307/2001372